Multicast Packing for Coding across Multiple Unicasts

Chun Meng (CUHK & UC Irvine) Hulya Seferoglu (MIT)
Athina Markopoulou (UC Irvine)
Kenneth W. Shum, Chung Chan (CUHK)
What's the Problem?

How to design NC for multiple unicasts to achieve good performance, e.g., common rate & cost?

NP-hard!
State-of-the-Art

- Integer LP approach
 - Scalability problem
- Evolutionary approach
- Pairwise NC
 - Ignores NC beyond two sessions
- Interference Alignment
 - Might be infeasible
Multicast Packing Code (MPC)
Strengths of MPC

- Applicable to any graph.
- Search space = all partitions of unicast sessions, irrelevant to network size.
- Rate region is characterized by a simple linear program.
- Allow NC across more than three unicast sessions.
Characterizing Achievable Rate of MPC

The value of each flow at $s_i = 1$

Each unicast session achieves unit rate

LP1 LP2 LP3 LP4 LP5

LP for MPC
Finding Good Partitions

\[\omega_i = (s_i, d_i) \]
\text{\textit{i}th unicast session}
Evaluation - Simulation Setup

Two Objectives:
- Max. common rate
- Min. cost

of unicast sessions: 3~7

Metrics:
- Performance gain
- Ratio of scenarios with gains
Evaluation - Simulation Results

Common rate

| $|\Omega|$ | η | γ | Time (sec) |
|------|------|-------|----------|
| 3 | 18 | 94.44 | 3.23 |
| 4 | 20 | 100 | 4.74 |
| 5 | 30 | 96.67 | 6.71 |
| 6 | 46 | 89.13 | 9.75 |
| 7 | 50 | 84 | 15.32 |

Cost

| $|\Omega|$ | η | γ | Time (sec) |
|------|------|-------|----------|
| 3 | 18 | 30.59 | 3.91 |
| 4 | 20 | 29.51 | 7.11 |
| 5 | 30 | 27.22 | 10.8 |
| 6 | 46 | 24.69 | 12.16 |
| 7 | 50 | 23.5 | 17.76 |

- **MPC is more scalable than routing**
- **MPC achieves fairly better performance than routing**
- **The annealing algorithm is efficient in finding good partitions**
Conclusion

• Introducing MPC

• The rate region of MPC is characterized by a linear program

• Simulated annealing algorithm to find good partitions

• Evaluation
Thank you!

Questions?